Spatial regulation of cytoplasmic snRNP assembly at the cellular level.

نویسندگان

  • Malwina Hyjek
  • Natalia Wojciechowska
  • Magda Rudzka
  • Agnieszka Kołowerzo-Lubnau
  • Dariusz Jan Smoliński
چکیده

Small nuclear ribonucleoproteins (snRNPs) play a crucial role in pre-mRNA splicing in all eukaryotic cells. In contrast to the relatively broad knowledge on snRNP assembly within the nucleus, the spatial organization of the cytoplasmic stages of their maturation remains poorly understood. Nevertheless, sparse research indicates that, similar to the nuclear steps, the crucial processes of cytoplasmic snRNP assembly may also be strictly spatially regulated. In European larch microsporocytes, it was determined that the cytoplasmic assembly of snRNPs within a cell might occur in two distinct spatial manners, which depend on the rate of de novo snRNP formation in relation to the steady state of these particles within the nucleus. During periods of moderate expression of splicing elements, the cytoplasmic assembly of snRNPs occurred diffusely throughout the cytoplasm. Increased expression of both Sm proteins and U snRNA triggered the accumulation of these particles within distinct, non-membranous RNP-rich granules, which are referred to as snRNP-rich cytoplasmic bodies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway.

The common neurodegenerative disease spinal muscular atrophy is caused by reduced levels of the survival of motor neurons (SMN) protein. SMN associates with several proteins (Gemin2 to Gemin6) to form a large complex which is found both in the cytoplasm and in the nucleus. The SMN complex functions in the assembly and metabolism of several RNPs, including spliceosomal snRNPs. The snRNP core ass...

متن کامل

The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation.

Spinal muscular atrophy (SMA) is a lethal neuromuscular disease caused by reduced levels of expression of the survival motor neuron (SMN) protein. SMN is part of a macromolecular complex essential for the assembly of the small nuclear ribonucleoproteins (snRNPs) that carry out pre-mRNA splicing. Although the SMN complex has the potential to control the pathway of snRNP biogenesis, it is not kno...

متن کامل

Cytoplasmic assembly of small nuclear ribonucleoprotein particles from 6 S and 20 S RNA-free intermediates in L929 mouse fibroblasts.

Newly transcribed small nuclear RNAs (snRNAs) appear transiently in the cytoplasm where they assemble with snRNP core proteins (B, D, E, F, and G) stored in large pools of snRNA-free intermediates before returning permanently to the nucleus. In this report, the cytoplasmic assembly of snRNP core particles in L929 mouse fibroblasts was investigated by kinetic analysis of assembly intermediates r...

متن کامل

snRNAs contain specific SMN-binding domains that are essential for snRNP assembly.

To serve in its function as an assembly machine for spliceosomal small nuclear ribonucleoprotein particles (snRNPs), the survival of motor neurons (SMN) protein complex binds directly to the Sm proteins and the U snRNAs. A specific domain unique to U1 snRNA, stem-loop 1 (SL1), is required for SMN complex binding and U1 snRNP Sm core assembly. Here, we show that each of the major spliceosomal U ...

متن کامل

The SMN–SIP1 Complex Has an Essential Role in Spliceosomal snRNP Biogenesis

Spinal muscular atrophy (SMA) is an often fatal neuromuscular disease that has been directly linked to the protein product of the Survival of Motor Neurons (SMN) gene. The SMN protein is tightly associated with a novel protein, SIP1, and together they form a complex with several spliceosomal snRNP proteins. Here we show that the SMN-SIP1 complex is associated with spliceosomal snRNAs U1 and U5 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 66 22  شماره 

صفحات  -

تاریخ انتشار 2015